首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   214篇
  国内免费   1篇
  2023年   7篇
  2022年   7篇
  2021年   55篇
  2020年   36篇
  2019年   46篇
  2018年   49篇
  2017年   38篇
  2016年   63篇
  2015年   100篇
  2014年   97篇
  2013年   104篇
  2012年   132篇
  2011年   130篇
  2010年   76篇
  2009年   103篇
  2008年   110篇
  2007年   91篇
  2006年   97篇
  2005年   87篇
  2004年   79篇
  2003年   77篇
  2002年   63篇
  2001年   40篇
  2000年   21篇
  1999年   33篇
  1998年   26篇
  1997年   10篇
  1996年   16篇
  1995年   14篇
  1994年   18篇
  1993年   9篇
  1992年   23篇
  1991年   25篇
  1990年   27篇
  1989年   22篇
  1988年   11篇
  1987年   10篇
  1986年   17篇
  1985年   10篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1980年   7篇
  1979年   11篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1973年   11篇
  1972年   15篇
排序方式: 共有2139条查询结果,搜索用时 15 毫秒
21.
Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.  相似文献   
22.
Human neutrophil cathepsin G and human skin chymase can inactivate bradykinin by cleavage at the carboxy terminal phenylalanyl-arginyl peptide bond of this polypeptide. The mast cell enzyme is far more effective than cathepsin G, the rates of hydrolysis being comparable to that found for angiotensin I to angiotensin II conversion (C.F. Reilly, D. Tewksbury, N. Schechter, and J. Travis, J. Biological Chemistry 257:8619-8622). This ability to both inactivate bradykinin and accelerate the production of angiotensin II may be of significance in the development of biochemical events associated with inflammation.  相似文献   
23.
Transfer of plasmid RP1 into chemolithotrophic Thiobacillus neapolitanus.   总被引:4,自引:2,他引:2  
RP1, a broad-host-range incompatibility group P1 plasmid specifying multiple drug resistances, has been transferred into the chemolithotrophic bacterium Thiobacillus neapolitanus. The ability of T. neapolitanus to receive, express, and transmit RP1-encoded antibiotic resistances was examined. The data show that this obligate chemolithotroph can accept, replicate, and express heterologous plasmid DNA from a heterotrophic bacterium.  相似文献   
24.
25.
We report the assembly of human immunodeficiency virus (HIV)-like particles in African green monkey kidney cells coinfected with two recombinant vaccinia viruses, one carrying the HIV-1 gag and protease genes and the other the env gene. Biochemical analysis of particles sedimented from culture supernatants of doubly infected cells revealed that they were composed of gag proteins, primarily p24, as well as the env proteins gp120 and gp41. Thin-section immunoelectron microscopy showed that these particles were 100 to 120 nm in diameter, were characterized by the presence of cylindrical core structures, and displayed the mature gp120-gp41 complexes on their surfaces. Furthermore, thin-section immunoelectron microscopy analysis of infected cells showed that particle assembly and budding occurred at the plasma membrane. Nucleic acid hybridization suggested that the particles packaged only the gag mRNA but not the env mRNA. Therefore, the system we present is well suited for studies of HIV virion maturation. In addition, the HIV-like particles provide a novel and attractive approach for vaccine development.  相似文献   
26.
The conversion of inter-alpha-trypsin inhibitor (I alpha I) into active, acid-stable derivatives by proteolytic degradation has been tested with 10 different proteinases. Of these, only plasma kallikrein, cathepsin G, neutrophil elastase, and the Staphylococcus aureus V-8 proteinase were found to be effective, each releasing more than 50% of this activity. However, a strong correlation between inhibitor degradation and significant release of acid-stable activity could only be found with the V-8 enzyme. Inhibition kinetics for the interaction of native I alpha I, the inhibitory fragment released by digestion with S. aureus V-8 proteinase, or the related urinary trypsin inhibitor, with seven different proteinases indicated that all had essentially identical Ki values with an individual enzyme and, where measurements were possible, nearly identical second order association rate constants. Significantly, none of the five human proteinases tested, including trypsin, chymotrypsin, plasmin, neutrophil elastase, and cathepsin G, would appear to have low enough Ki values to be physiologically relevant. Thus, the role of native I alpha I or its degradation products in controlling a specific proteolytic activity is still unknown.  相似文献   
27.
A. Belver  R. L. Travis 《Protoplasma》1990,155(1-3):76-84
Summary The short-term effects of NaCl and mannitol stress on plasma membrane (PM) polypeptides from corn roots (Zea mays L.) were determined using two-dimensional gel electrophoresis following radiolabeled amino acid incorporation. After 2.5 hours, both stress treatments altered synthesis of several polypeptides. Changes included up-regulation of some polypeptides with concomitant down-regulation of others. Some changes were unique to the stress treatment while others were common to both NaCl and mannitol. No new polypeptides appeared in either case. Pulse-chase experiments following 0.5-hours and 2.5-hours incubation periods with radiolabeled amino acids did not reveal differences in turnover of PM polypeptides. The results support the contention that altered synthesis of PM proteins under stress may contribute to the alteration of membrane function.Abbreviations ER endoplasmic reticulum: GA Golgi - PM plasma membrane - PVPP polyvinylpolypyrrolidone  相似文献   
28.
Adhesins from oral bacteria perform an important function in colonizing target tissues within the dentogingival cavity. In Porphyromonas gingivalis certain of these adhesion proteins exist as a complex with either of two major proteinases referred to as gingipain R (arginine-specific gingipain) and gingipain K (lysine-specific gingipain) (R. N. Pike, W. T. McGraw, J. Potempa, and J. Travis, J. Biol. Chem. 269:406-411, 1994). With specific proteinase inhibitors, it was shown that hemagglutination by either proteinase-adhesin complex could occur independently of proteinase activity. Significantly, low concentrations of fibrinogen, fibronectin, and laminin inhibited hemagglutination, indicating that adherence to these proteins and not the hemagglutination activity was a primary property of the adhesin activity component of complexes. Binding studies with gingipain K and gingipain R suggest that interaction with fibrinogen is a major function of the adhesin domain, with dissociation constants for binding to fibrinogen being 4 and 8.5 nM, respectively. Specific association with fibronectin and laminin was also found. All bound proteins were degraded by the functional proteinase domain, with gingipain R being more active on laminin and fibronectin and gingipain K being more effective in the digestion of fibrinogen. Cumulatively, these data suggest that gingipain R and gingipain K, acting as proteinase-adhesin complexes, progressively attach to, degrade, and detach from target proteins. Since such complexes appear to be present on the surfaces of both vesicles and membranes of P. gingivalis, they may play an important role in the attachment of this bacterium to host cell surfaces.  相似文献   
29.
The effect of NH 4 + on the regulation of NO 3 and NO 2 transport systems in roots of intact barley (Hordeum vulgareL.) seedlings grown in NO 3 or NO 2 was studied. Ammonium partially inhibited induction of both transport systems. The inhibition was less severe in NO 2 -fed than in NO 3 -fed seedlings, presumably due to lower uptake of NH 4 + in the presence of NO 2 . In seedlings pretreated with NH 4 + subsequent induction was inhibited only when NH 4 + was also present during induction, even though pretreated roots accumulated high levels of NH 4 + . This indicates that inhibition may be regulated by NH 4 + concentration in the cytoplasm rather than its total accumulation in roots. L-Methionine sulfoximine did not relieve the inhibition by NH 4 + , suggesting that inhibition is caused by NH 4 + itself rather than by its assimilation product(s). Ammonium inhibited subsequent expression of NO 3 transport activity similarly in roots grown in 0.1, 1.0, or 10 mM NO 3 for 24 h (steady-state phase) or 4 d (decline phase), indicating that it has a direct, rather than general feedback effect. Induction of the NO 3 transport system was about twice as sensitive to NH 4 + as compared to the NO 2 transport system. This may relate to higher turnover rates of membraneassociated NO 3 -transport proteins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - MSO L-methionine sulfoximine  相似文献   
30.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号